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T–S Fuzzy Model-Based Robust Stabilization for
Networked Control Systems With Probabilistic

Sensor and Actuator Failure
Engang Tian, Dong Yue, Senior Member, IEEE, Tai Cheng Yang, Zhou Gu, and Guoping Lu

Abstract—The system studied in this paper has four main fea-
tures: 1) It is a networked controlled system (NCS), and therefore,
the signal transfer is subject to random delay and/or loss; 2) it is
a nonlinear system approximated by a Takegi–Sugeno (T–S) fuzzy
model; 3) its multisensors and multiactuators are subject to various
possible faults/failures; and 4) there are uncertainties in the plant
model parameters. A comprehensive model is first developed in this
paper to cover these features for a class of NCS nonlinear systems.
This model has removed some limitations of similar models in the
published literature. Then, the Lyapunov functional and the linear
matrix inequality (LMI) are applied to develop two new stability
conditions (Theorems 1 and 2). These conditions and an algorithm
are used to design a controller to achieve robust mean square sta-
bility of the system. Finally, two examples are used to demonstrate
the application of the modeling and the controller design method
developed.

Index Terms—Networked control systems (NCS), probabilistic
failure, robust mean square stability (RMSS), Takegi–Sugeno
(T–S) fuzzy model.

I. INTRODUCTION

MANY infrastructure, manufacture, service, and mili-
tary systems of present-day society can naturally be

described as networks of a large number of simple interacting
units. Shared communication networks are increasingly being
used to support the information exchange in distributed control
systems. Therefore, networked control systems (NCSs) have
become an active research area in recent years [5], [16], [18],
[22], [24], [30], [31], [33] . They differ from traditional control
systems in that the connections of their components are via
shared communication networks instead of point-to-point
wiring. This is mainly motivated by practical considerations,

Manuscript received April 1, 2010; revised September 8, 2010 and December
8, 2010; accepted February 7, 2011. Date of publication February 28, 2011;
date of current version June 6, 2011. This work was supported by the National
Natural Science Foundation of China under Grant 60834002, Grant 60904013,
Grant 51075215, and Grant 61074025.

E. Tian is with the School of Electrical and Automation Engineering, Nanjing
Normal University, Nanjing 210042, China (e-mail: teg@njnu.edu.cn).

D. Yue (corresponding author) is with the Department of Control Science and
Engineering, Huazhong University of Science and Technology, Wuhan 430074,
Hubei, China (e-mail: medongy@vip.163.com).

T. C. Yang is with the Department of Engineering and Design, University of
Sussex, Brighton BN1 9QT, U.K. (e-mail: t.c.yang@sussex.ac.uk).

Z. Gu is with the College of Power Engineering, Nanjing Normal University,
Nanjing, Jiangsu 210042, China (e-mail: guzhou@njnu.edu.cn).

G. Lu is with the College of Electrical Engineering, Nantong University,
Jiangsu 226007, China (e-mail: lu.gp@ntu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2011.2121069

such as modularity, low cost, easier maintenance, etc. However,
the introduction of communication networks in control systems
complicates the system modeling, analysis, and controller
design. Network-induced random time delay, packet loss, and
possible packet out-of-order are major issues in front of any
NCS designer. Up to very recently, these issues were only topics
of many NCS studies [2], [7], [22]. It is known that these issues
present some significant challenges to designers. Furthermore,
some research also takes into account uncertainties in the plant
model [7], [22], [26], [29]. All the aforementioned NCS funda-
mental issues are addressed in the model presented in this paper.

Naturally, most existing NCS studies are concentrated on lin-
ear systems. Nonlinear system analysis and design is difficult by
its own nature—there are still many open challenges even under
the traditional structure [14], [15]. There are currently only a
few publications that study NCS for some forms of nonlinear
systems [12], [19]. However, in recent years, there has been
some NCS research on the plant being modeled as a nonlinear
Takegi–Sugeno (T–S) fuzzy system [8], [10], [27], [28]. The
plant considered in this paper, broadly speaking, is also such
a model. However, the overall system modeling and controller
design studied, as outlined in the following, is different from
those published in the literature.

Within the general framework as described earlier, we also ad-
dress the issue of possible fault/failure of sensors and actuators in
an NCS environment. Fault-tolerant control is a great concern in
many applications. In distributed industrial and military NCSs,
sensors and actuators can be in a hostile environment and subject
to fault, failure, and malfunction. One of the main focuses of this
paper is to address this problem. In particular, the fault/failure
model proposed is more general and is different from those
published in the NCS literature [7], [22], [26], [29]. A set of dif-
ferent stochastic variables are proposed in this paper to specify
the fault/failure status of every sensor/actuator, such as complete
failure, partial failure, complete normal, and measurement dis-
tortion. The stochastic variables proposed are in a general statis-
tics form and these enable various random events of fault/failure
to be modeled. Including these stochastic variables in the system
model, a new kind of stochastic nonlinear NCS model is estab-
lished. Some existing models are special cases of this general
model presented. The details of the model are given in Section II.

The model outlined earlier has removed some limitations of
some existing work. Noticeably, some NCS plus T–S fuzzy
models do not take into account possible fault/failure of sensors
and actuators [8], [10], [27], [28]. When possible failure is con-
sidered, some only consider sensor failure but assume that there
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is no actuator failure [3], [4], [6]; some only consider two states
of the sensors/actuators: normal and complete failure [4], [6],
[21], [23], [25] without considering possible malfunction and
measurement distortion; some assume that the failure statistics
is the same for the all sensors and actuators in a system [4],
[21], [23], [25]. In fact, the limitations of each work quoted here
are on more than one aspect. For example, in [21] and [23], it
only considers sensor failure and two conditions: normal and
complete failure. It also assumes that the failure statistics is the
same for the all sensors.

One of the two main contributions of this paper is to develop
a comprehensive model for the study of a class of nonlinear
NCS systems, taking into account various possible failures of
sensors and actuators and their specific statistic characteristics.
This is presented in Section II. Another main contribution is the
controller design for the robust stabilization of such a system.
This is presented in Section III. Section IV uses two examples
to show the modeling and controller design methods developed,
and the paper is concluded in Section V.

The two theorems developed in this paper on the robust
mean square stability (RMSS) are based on the Lyapunov
functional and the linear matrix inequality (LMI) method.
Apart from some nontrivial mathematical formulations and
manipulations—which may be also useful for some further the-
oretical work or other applications—there is no fundamental
contribution in applying these two commonly used tools in this
paper. However, in order to have a workable design method
based on these two newly proved theorems, an algorithm is
developed. It is also interesting to note that the solvability of
the stability conditions derived depends not only on the upper
bound of the delay due to networked communications but on
the failure rates of the sensors or actuators as well. These details
are shown in Section III.

II. MODELING

Consider a discrete nonlinear system represented by a T–S
fuzzy model

Plant rule i: IF θ1(k) is Fi1 , . . . , θr (k) is Fir , THEN

x(k + 1) = (Ai + ΔAi(k)) x(k) + Biu(k)

where Ai and Bi are matrices with appropriate dimensions.
x(t) ∈ R

n and u(t) ∈ R
m are the state vector and control vec-

tor, respectively. i ∈ {1, 2, . . . , r} Δ= S, and r is the number of
IF–THEN rules. ΔAi(k) are unknown matrices of appropriate
dimensions satisfying

ΔAi(k) = HiFi(k)E1i (1)

where Hi and E1i(i ∈ S) are known constant matrices of ap-
propriate dimensions, and Fi(k) is an unknown matrix function
with Lebesgue measurable elements satisfying

FT
i (k)Fi(k) ≤ I.

Applying center-average defuzzifier, product interference, and
singleton fuzzifier, the T–S fuzzy system can be inferred as

Fig. 1. Structure of a nonlinear NCS.

follows:

x(k + 1) =
r∑

i=1

μi ((Ai + ΔAi(k)) x(k) + Biu(k)) (2)

and

μi(θ(k)) =
ωi(θ(k))∑r
i=1 ωi(θ(k))

, ωi (θ(k)) =
g∏

j=1

Wi
j (θj (k))

Wi
j (θj (k)) is the grade membership of θj (k) in Wi

j , and
μi(θ(k)) satisfies

μi(θ(k)) ≥ 0,

r∑

i=1

μi(θ(k)) = 1.

For notational simplicity, we use μi to represent μi(θ(k)).
For the system studied in this paper and shown in Fig. 1, we

assume that 1) sensors are clock-driven and that the controller
and actuators are even-driven and 2) that each data packet in
networked communication is time-stamped. Time stamps are
used to obtain the information about the time delay and packet
loss at the actuator nodes.

Given these assumptions, for k ∈ [τk + ik , τk+1 + ik+1 − 1],
the controller uk can be designed in a form of

Control rule i: IF θ1(k) is Fi1 , . . . , θr (k) is Fir

THEN u(k) = Kix(ik )

where Ki (i ∈ S) is the fuzzy control feedback gain to be
determined. τk is the network-induced delay, and ik is the
kth sampling instant at the sensor. {i1 , i2 , i3 , . . .} is a sub-
set of {1, 2, 3, . . .} , which contains the information of packet
loss and packet out-of-order. If {i1 , i2 , i3 , . . .} = {1, 2, 3, . . .} ,
ik+1 = ik + 1, it means no packet loss. If ik+1 − ik = n(≥ 2),
it means that n − 1 continuous packets are lost.

Let us define dk = k − ik , this leads to

τk ≤ dk ≤ τk+1 + (ik+1 − ik − 1).
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Applying the parallel distributed compensation (PDC) method,
the inferred fuzzy controller is given by

u(k) =
r∑

j=1

μk
j Kjx(k − dk ) (3)

where μk
j contains the delay information in both forward

and backward channels. Combining (2) and (3), for k ∈
[τk + ik , τk+1 + ik+1 − 1] , the closed-loop nonlinear NCS be-
comes

x(k + 1) =
r∑

i=1

r∑

j=1

μiμ
k
j [(Ai + ΔAi(k)) x(k)

+BiKjx(k − dk )]

x(k) = φk , k = −dM , −dM − 1, . . . ,−1, 0 (4)

where φk is the initial condition of x(k), and dM is the upper
bound of dk .

Remark 1: The systems studied in [10], [27], [28], and [32]
also use the model of (4). However, their studies do not include
the dynamics associated with possible sensor/actuator failure.

In this paper, different from those in [4], [6], and [23], the
failure of sensors or actuators has each individually speci-
fied probabilistic distribution. Its value is in an interval [0, θl ]
(l = 1, 2, θl ≥ 1).

Taking into account the possible failures, for k ∈ [τk +
ik , τk+1 + ik+1 − 1], the controller is as follows:

u(k) =
r∑

j=1

μk
j Π2KjΠ1x(k − dk ) (5)

where Π1 = diag{π11 , π12 , . . . , π1n} and π1i(i = 1, 2, . . . , n)
are n uncorrelated random variables taking values on the
interval [0, θ1i ] , where θ1i ≥ 1. The expectation and vari-
ance of π1i(i = 1, 2, . . . ,m) are αi and ᾰ2

i , respectively.
Π2 = diag{π21 , π22 , . . . , π2m} with π2i(i = 1, 2, . . . ,m) be-
ing m uncorrelated random variables taking values on the in-
terval [0, θ2j ] , where θ2i ≥ 1. The expectation and variance of
π2i(i = 1, 2, . . . , m) are βi and β̆2

i , respectively.
Remark 2: It is assumed that the earlier detailed probabilistic

distribution data is known to the designer. If not, then some
procedures given in the Appendix can be used to obtain the
required data.

The stochastic variables π1i(i = 1, 2, . . . , n) and π2j (j =
1, 2, . . . ,m) given earlier are used to model fault/failure includ-
ing measurement distortions and the network-induced delay or
packet loss. At time k, 1) when π1i = 0(or π2j = 0), it means
complete failure of the ith sensor (or jth actuator) or packet loss
during the transmission from a sensor to the controller (or from
the controller to an actuator); 2) when π1i = 1(or π2j = 1) and
ᾰ2

i = 0(or β̆2
j = 0), the ith sensor (or jth actuator) is in a good

work condition; 3) when π1i ∈ (0, 1) (or π2j ∈ (0, 1)), it means
partial failure of the ith sensor (or jth actuator) or measurements
distortion, i.e., the signal used in the controller or an actuator
is smaller than its true value; and 4) when π1i ∈ (1, θ1i) (or
π2j ∈ (1, θ2j )), it means that the signal used is larger than its
true value.

Remark 3: There are some limitations of the failure models
used in the existing literature: 1) In [6], [20], and [21], the
failure models used can only deal with either complete normal
or complete failure; and 2) in [4], there is a partial-failure model,
but in [6], [20], and [21], the failure models for all sensors
(actuators) are the same. It can be seen that the models used
in these references can be considered as special cases of the
general failure model proposed in this paper.

Substituting (5) into (4), for k ∈ [τk + ik , τk+1 + ik+1 − 1] ,
the system with probabilistic sensor and actuator failures can be
modeled in a form of

x(k + 1) =
r∑

i=1

r∑

j=1

μiμ
k
j [(Ai + ΔAi(k)) x(k)

+BiΠ2KjΠ1x(k − dk )]

x(k) = φk , k = −dM ,−dM − 1, . . . ,−1, 0. (6)

One of the main purposes of this paper is to design a feedback
gain Kj to guarantee the RMSS of system (6) with probabilistic
failures of sensors and actuators.

III. STABILITY CONDITIONS AND CONTROLLER DESIGN

From the definitions of Π1 and Π2 , it leads to E{Π1} =

diag{α1 , . . . , αn}
�
=Π̄1 =

∑n
i=1 αiΘi

1 , E{Π2}= diag{β1 , . . . ,

βm} �
= Π̄2 =

∑m
i=1 βiΘi

2 , and E{Π1 − Π̄1} = diag{0, . . . ,
0}, E{Π2 − Π̄2} = diag{0, . . . , 0}, where

Θi
1 = diag{0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

}

Θj
2 = diag{0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j

}.

For simplicity, we assume that ΔAi(k) = 0 and denote Π̂1 =
Π1 − Π̄1 and Π̂2 = Π2 − Π̄2 ; therefore, (6) becomes

x(k + 1) =
r∑

i=1

r∑

j=1

μiμ
k
j {A(i, j)ζ(k) + B(i, j)x(k − dk )}

k ∈ [τk + ik , τk+1 + ik+1 − 1] (7)

where

ζT (k) =
[
xT (k) xT (k − dk ) xT (k − dM )

]

A(i, j) =
[
Ai BiΠ̄2Kj Π̄1 0

]

B(i, j) = BiΠ̂2Kj Π̄1 + BiΠ̄2Kj Π̂1 + BiΠ̂2Kj Π̂1 . (8)

Before the main results, the definition of RMSS is given as
follows.

System (6) is said to be RMSS, if there exists a scalar c > 0
such that

E
{ ∞∑

k=0

‖x(k)‖2

}
≤ cE {‖φk‖}2 . (9)

The following lemmas are necessary in the proof of the main
theorems.
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Lemma 1: [9] For matrix W ∈ R
n×n , W = WT > 0, a con-

stant d > 0 and a vector function x(k) ∈ R
n , y(k) = x(k +

1) − x(k) such that the following integration is well defined,
it holds that

− d
k−1∑

i=k−d

yT (i)Wy(i)

≤
[

x(k)

x(k − d)

]T [−W W

W −W

] [
x(k)

x(k − d)

]
. (10)

Lemma 2: For matrix W ∈ R
n×n , W = WT > 0, a func-

tion dk satisfying 0 ≤ dk ≤ dM and a vector function x(k) ∈
R

n , y(k) = x(k + 1) − x(k) such that the following integration
is well defined, it holds that

− dM

k−1∑

i=k−dM

yT (i)Wy(i)

≤ ηT (k)

⎡

⎢⎣
−W W 0

W −2W W

0 W −W

⎤

⎥⎦ η(k) (11)

where ηT (k) = [xT (k) xT (k − dk ) xT (k − dM ) ] .
Proof: Note that

− dM

k−1∑

i=k−dM

yT (i)Wy(i)

≤ −dk

k−1∑

i=k−dk

yT (i)Wy(i)

− (dM − dk )
k−dk −1∑

i=k−dM

yT (i)Wy(i) (12)

applying Lemma 1 to (12), it leads to (11).
Theorem 1: For constant dM , system (7) is mean square sta-

bility (MSS) if there exist matrices P > 0, Q > 0, R > 0, and
Kj with appropriate dimensions such that the following condi-
tions hold:

Ξij + Ξj i < 0, i ≤ j ∈ S (13)

where

Ξij =

⎡

⎢⎣
Ξ11 ∗ ∗
Ξij

21 Ξ22 ∗
Ξij

31 0 Ξ33

⎤

⎥⎦

Ξ11 =

⎡

⎣
−P − R + Q ∗ ∗

R −2R ∗
0 R −R − Q

⎤

⎦

Ξ22 = diag{−P−1 ,−R−1}
Ξ33 = diag{−P−1 , . . . ,−P−1 ,−R−1 , . . . ,−R−1}

Ξij
21 =

[
A(i, j)

dM Ā(i, j)

]
, Ξij

31 =
[

Σ

dM Σ

]

Ā(i, j) = [Ai − I BiΠ̄2Kj Π̄1 0 ]

ΣT = [χT
1 χT

2 . . . χT
n ]

χT
l = [BT

1l BT
2l . . . BT

ml ]

Bls = [ 0
√

vlsBiΘs
2KjΘl

1 0 ]

vls = ᾰ2
l β

2
s + α2

l β̆
2
s + ᾰ2

l β̆
2
s , l = 1, . . . , n, s= 1, . . . ,m.

Proof: Define

y(k) = x(k + 1) − x(k).

Choose a Lyapunov–Krasovskii functional candidate

V (k + 1) = xT (k)Px(k) +
k−1∑

i=k−dM

xT (i)Qx(i)

+ dM

dM∑

i=1

k−1∑

j=k−i

yT (j)Ry(j) (14)

take the forward difference of (14), and then evaluate its expec-
tation

E {ΔV (k)}

= E

⎧
⎨

⎩

r∑

i=1

r∑

j=1

μiμ
k
j

{
ζT (k)AT (i, j)PA(i, j)ζ(k)

+ xT (k − dk )BT (i, j)PB(i, j)x(k − dk )

+ x(k) (Q − P ) x(k) − xT (k − dM )Qx(k − dM )

+ d2
M yT (k)Ry(k) − dM

k−1∑

i=k−dM

yT (i)Ry(i)

}}
. (15)

Recalling the definition of B(i, j) and noting that E{Π̂1} =
diag{0, . . . 0}, E{Π̂2} = diag{0, . . . 0}

E{BT (i, j)PB(i, j)}
= E{(BiΠ̂2Kj Π̄1 + BiΠ̄2Kj Π̂1 + BiΠ̂2Kj Π̂1)T

· P (BiΠ̂2Kj Π̄1 + BiΠ̄2Kj Π̂1 + BiΠ̂2Kj Π̂1)}

= E{(BiΠ̂2Kj Π̄1)T P (BiΠ̂2Kj Π̄1)}

+ E{(BiΠ̄2Kj Π̂1)T P (BiΠ̄2Kj Π̂1)}

+ E{(BiΠ̂2Kj Π̂1)T P (BiΠ̂2Kj Π̂1)} (16)

and the property of Π1 and Π2 , then from (16)

E{(BiΠ̂2Kj Π̄1)T P (BiΠ̂2Kj Π̄1)}

= E
{

n∑

l=1

m∑

s=1

α2
l β̆

2
s

(
BiΘs

2KjΘl
1
)T

P
(
BiΘs

2KjΘl
1
)
}

(17)

E{(BiΠ̄2Kj Π̂1)T P (BiΠ̄2Kj Π̂1)}

= E
{

n∑

l=1

m∑

s=1

ᾰ2
l β

2
s

(
BiΘs

2KjΘl
1
)T

P
(
BiΘs

2KjΘl
1
)
}

(18)
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E{(BiΠ̂2Kj Π̂1)T P (BiΠ̂2Kj Π̂1)}

= E
{

n∑

l=1

m∑

s=1

ᾰ2
l β̆

2
s

(
BiΘs

2KjΘl
1
)T

P
(
BiΘs

2KjΘl
1
)
}

.

(19)

Combining (17)–(19)

E
{
xT (k − dk )BT (i, j)PB(i, j)x(k − dk )

}

= E
{

n∑

l=1

m∑

s=1

vlsx
T (k − dk )

(
BiΘs

2KjΘl
1
)T

·P
(
BiΘs

2KjΘl
1
)
x(k − dk )

}

= E
{

n∑

l=1

m∑

s=1

ζT (k)BT
lsPBlsζ(k)

}
(20)

where vls and Bls are defined in (13). Similarly

E
{
yT (k)Ry(k)

}
= E

⎧
⎨

⎩

r∑

i=1

r∑

j=1

μiμ
k
j

{
ζT (k)Υζ(k)

}
⎫
⎬

⎭
(21)

where

Υ =

[
ĀT (i, j)RĀ(i, j) +

n∑

l=1

m∑

s=1

BT
lsRBls

]

Ā(i, j) = [Ai − I BiΠ̄2Kj Π̄1 0 ] .

Applying Lemma 2 for

− dM

k−1∑

i=k−dM

yT (i)Ry(i)

≤ ηT (k)

⎡

⎣
−R R 0
R −2R R
0 R −R

⎤

⎦ η(k) (22)

and substituting (20)–(22) into (15)

E {ΔV (k)} ≤ E

⎧
⎨

⎩

r∑

i=1

r∑

j=1

μiμ
k
j

[
ζT (k)Ψ(i, j, l, s)ζ(k)

]
⎫
⎬

⎭

= E

⎧
⎨

⎩

r∑

i=1

∑

i≤j

μiμ
k
j

[
ζT (k)Ψ̄(i, j, l, s)ζ(k)

]
⎫
⎬

⎭

Ψ̄(i, j, l, s) = Ψ(i, j, l, s) + Ψ(j, i, l, s) (23)

where Ψ(i, j, l, s) = Ξ11 + AT (i, j)PA(i, j) + d2
M ĀT (i, j)

RĀ(i, j) +
∑n

l=1
∑m

s=1(BT
lsPBls + d2

M BT
lsRBls). Recalling

(13) and using Schur complement, there exists constant λ > 0
such that

E {ΔVk} ≤ −λE
{
ζT (k)ζ(k)

}
≤ −λE

{
xT (k)x(k)

}
. (24)

Since ∪∞
k=1 [τk + ik , τk+1 + ik+1 − 1] = [0,∞), from (24)

E
{ ∞∑

k=0

xT (k)x(k)

}
≤ 1

λ
E {V (0)} (25)

and from the construction of V (k), there exists a constant c such
that

E {V (0)} ≤ λcE
{
φT

k φk

}
. (26)

Based on the definition of the RMSS, the proof is completed. �
Remark 4: From this proof, one can see that the solvability of

the stability conditions derived depends not only on the upper
bound of the delay τM , due to networked communications but
to the failure rates of the sensors or actuators Π̄i , i = 1, 2 as
well.

Applying a similar approach for parameter uncertainties [17]
and base on Theorem 1, it leads to the following.

Theorem 2: For a given constant dM , system (6) is RMSS if
there exist matrices P > 0, Q > 0, R > 0, and Kj with appro-
priate dimensions such that the following conditions hold:

Ξ̄ij + Ξ̄j i < 0, i ≤ j ∈ S (27)

where

Ξ̄ij =

⎡

⎢⎢⎢⎢⎣

Ξ11 ∗ ∗ ∗
Ξij

21 Ξ22 ∗ ∗
Ξij

31 0 Ξ33 ∗
Ξi

41 Ξi
43 0 Ξi

44

⎤

⎥⎥⎥⎥⎦

where Ξ11 ,Ξ
ij
21 ,Ξ

ij
31 ,Ξ22 , and Ξ33 are defined in (13), and

Ξi
41 =

[
0 0 0

εiE1i 0 0

]
,Πi

43 =
[

HT
i dM HT

i

0 0

]

Πi
44 = diag{−εiI,−εiI}.

The next task is to design a controller, i.e., to find feedback gain
Kj , based on these two new theorems. In the existing litera-
ture, for example, in [1], [13], and [27], the design algorithm
is based on pre- and postmultiplying the stability conditions
with diag{P−1 , . . . , P−1} and defining some new parameters
X = P−1 , Q̃ = XQX , and Y = KX . This first leads to some
inequalities, which are not strict LMIs due to the existence of
XR−1X . Then, in the second step, this is reformulated into
a sequence of optimizations subject to some LMI constrains.
However, this approach cannot be applied here. If one pre- and
postmultiplies BiΠ̄2Kj Π̄1 with X , the result XBiΠ̄2Kj Π̄1X
is a nonlinear variable. In the second step of reformulation, the
resultant constrains are no longer LMIs and cannot be solved
by the aforementioned algorithm used in [1], [13], and [27].
Therefore, the following algorithm is proposed in this paper.

Define new variables P̄ = P−1 and R̄ = R−1 , and replace
them in (13) and (27), respectively. These new inequalities are
denoted as (13)’ and (27)’, respectively.

Given constants dM and c, where c denotes the maximum
number of iterations, the algorithm for the controller design
based on Theorem 1 (or Theorem 2) is given as follows.

1) Find a feasible solution
{
P, P̄ , R, R̄

}
to LMIs [13]’ [or

(27)’] and
[

P I
I P̄

]
≥ 0,

[
R I
I R̄

]
≥ 0. (28)

If there is no feasible solution, EXIT. Else, set k = 0.
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2) Solve the minimization problem

min tr
(
Pk P̄ + P̄kP + RkR̄ + R̄kR

)

subject to LMIs (13)’ [or (27)’] and (28). (29)

3) If (30), shown below, is satisfied for a sufficient small
scalar ε > 0, the feedback gain Kj is obtained; otherwise,
set k = k + 1. If k < c, go to Step 2); otherwise, EXIT
(no feasible solution is found).

∣∣tr(Pk P̄ + P̄kP + RkR̄ + R̄kR) − 4n
∣∣ < ε. (30)

IV. EXAMPLES

To illustrate applications of the proposed design method, two
examples are presented in this section.

Example 1: Consider a nonlinear mass-spring-damper me-
chanical system [11]

Mÿ(t) + g(y(t), ẏ(t)) + f(y(t)) = φ(ẏ(t))u(t)

where M is the mass, u(t) is the force, f(y(t)), g(y(t), ẏ(t)),
and φ(ẏ(t)) are the nonlinear or uncertain terms with respect
to the spring, the damper, and the input, respectively. Assume
that g (y(t), ẏ(t)) = c1y(t) + c2 ẏ(t), f (y(t)) = c(t)y(t), and
φ (ẏ(t)) = 1 + c5 ẏ

3(t), where c(t) is the uncertain term within
the sector [c3 , c4 ] and M = 1.0, c1 = 0, c2 = 1, c3 = 0.5, c4 =
1.81, and c5 = 0.13. Similar to [11], choose state variable
x(t) = [ẏ y]T , then the A and B matrices in the model of (6)
are as follows:

A1 =
[−1.0 −1.155

1 0

]
, B1 =

[
1.4387

0

]

A2 =
[−1.0 −1.155

1 0

]
, B2 =

[
0.1217

0.0023

]
.

The aforementioned continuous-time system is discretized with
a zero-order hold and a sampling period T = 0.2 s. The discrete-
time version of A and B matrices are as follows:

A1 =
[

0.7986 −0.2078

0.1799 0.9784

]
, B1 =

[
0.3119

0.0058

]

A2 =
[

0.7986 −0.2078

0.1799 0.9784

]
, B2 =

[
0.5613

0

]
.

The parameter uncertainties are as follows:

H1 = H2 =
[

1 0

0 1

]
, E11 =

[
0.05 0

0 0.07

]

E12 =
[

0.07 0

0 0.05

]
.

For dM = 4, E{Π1} = diag{0.8, 1.1}, ᾰ1 = ᾰ2 = 0.1, apply-
ing the proposed algorithm, the feedback gain can be obtained
as follows:

K1 = [−0.0054 −0.0219 ] , K2 = [−0.0169 0.0014 ] .

Choosing a membership function as μ1(ẏ) = sin2(ẏ), μ2(ẏ) =
1 − μ1(ẏ), and an initial function φ(k) = [ 1 −1 ]T , the state
responses of x(k) are plotted in Fig. 2. It shows that the designed

Fig. 2. State responses of the system with unreliable sensors having different
failure rates.

Fig. 3. Values of the stochastic variables π11 and π12 .

controller indeed stabilizes the system. The stochastic variables
π11 and π12 in this simulation are plotted in Fig. 3.

Example 2: Consider a nonlinear system, whose dynamics is
approximated by (7) with following A and B matrices:

A1 =

⎡

⎢⎢⎢⎣

0.3996 0.0003 0.0002 −0.0037

0.3005 0.4900 −0.0002 −0.0406

0.0010 0.0037 0.8453 −0.5644

0 0 0.0101 −0.5644

⎤

⎥⎥⎥⎦

A2 =

⎡

⎢⎢⎢⎣

0.8729 0.0 −0.0013 −0.0020

0 −0.2300 −0.0002 0.0146

0.0010 0.0037 0.5300 0.0832

0.2742 0 0.0101 0.8356

⎤

⎥⎥⎥⎦
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Fig. 4. State responses for NNCS with unreliable sensors and actuators with
different failure rate.

Fig. 5. Values of the stochastic variables π1 i , i = 1, 2, 3, 4.

B1 =

⎡

⎢⎢⎢⎣

0.0044 0.0019

0.0356 −0.0759

−0.0484 0.0405

−0.0003 0.0003

⎤

⎥⎥⎥⎦ B2 =

⎡

⎢⎢⎢⎣

0 −0.0001

−0.0003 0.0004

−0.0075 0.0049

0 −0.0001

⎤

⎥⎥⎥⎦.

(31)

For dM = 3, E{Π1} = diag{1.2, 0.9, 0.7, 1.1}, E{Π2} =
diag{1.0, 0.8}, ᾰi = 0.1(i = 1, 2, 3, 4), β̆1 = 0, β̆2 = 0.1, ap-
plying the proposed algorithm, the feedback gains obtained are
as follows:

K1 =
[−0.1045 0.9322 0.2444 −0.9581

−0.3428 1.6165 −0.3070 −1.0380

]

Fig. 6. Values of the stochastic variables π2 i , i = 1, 2.

K2 =
[

0.8165 −8.7631 5.2214 7.1656

3.6738 −9.0581 3.4036 5.6680

]
.

For a membership function μ1(x1) = sin2(x1), μ2(x1) = 1 −
μ1(x1), and an initial function φ(k) = [ 1 2 0 −1 ]T , the
state responses of x(k) are plotted in Fig. 4. It shows that the
closed-loop system is stable. The stochastic variables π1i(i =
1, 2, 3, 4) and π2i(i = 1, 2) in this simulation are plotted in Figs.
5 and 6, respectively.

V. CONCLUSION

This paper investigates reliable control of a class of nonlin-
ear NCSs via T–S fuzzy model with probabilistic sensor and
actuator faults/failures, measurement distortion, time-varying
delay, packet loss, and norm-bounded parameter uncertainties.
A new model is developed in this paper. This model has removed
some limitations of similar models in the published literature.
The Lyapunov functional and the LMI are applied to develop
two sufficient stability conditions. These conditions and the pro-
posed algorithm are used to design a controller to achieve RMSS
of the system.

APPENDIX

In this paper, the expectation and variance of each stochastic
variable (π1i and π2j , i = 1, . ., n, j = 1, . .,m) are supposed
to be known a priori. In fact, these can be measured by the
following method.

1) If the probabilistic density function of π1i is known, the
expectation and variance of π1i can be calculated easily.

2) Otherwise, these can be obtained as follows. Placing a
counter before the controller to measure the fault condition of
the ith sensor, then dividing the variable range

[
0, πM

1i

]
into l

equal intervals (l is large enough to ensure that each interval
is sufficiently small), the probability of π1i falling into each
interval

[
i(πM

1i /l), (i + 1) (πM
1i /l)

)
can be obtained, which is

denoted as εi = P
{
π1i ∈

[
i(πM

1i /l), (i + 1) (πM
1i /l)

)}
. Since
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l is large, the probabilistic density function can be approximated
by

p1i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 , π1i =
πM

1i

2l
. . . . . .

εi , π1i = i
πM

1i

l
+

πM
1i

2l
. . . . . .

εl , π1i = πM
1i − πM

1i

2l
.

The expectation of π1i can be obtained as α̂i =
∑l

i=1
εi(i(πM

1i /l) + (πM
1i /2l)), and the variance can also be obtained.

The expectation and variance of π2j can be obtained similarly.
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